
Конденсаторы

Конденсатор встречается в наборах Мастер Кит (да и вообще в электронных устройствах) почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы.

Принцип работы конденсатора

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Чем больше отношение площади пластин к толщине диэлектрика – тем выше ёмкость конденсатора. Чтобы избежать физического увеличения размеров конденсатора до огромных размеров, конденсаторы изготавливают многослойными: например, сворачивают ленты пластин и диэлектриков в рулон.

Так как любой конденсатор имеет диэлектрик, то он не способен проводить постоянный ток, но он может сохранять электрический заряд, приложенный к его обкладкам, и в нужный момент отдавать его. Это важное свойство

Давайте договоримся: радиодеталь мы называем конденсатором, а его физическую величину — ёмкостью. То есть правильно сказать так: «конденсатор имеет ёмкость 1 мкФ», но некорректно сказать: «замени на плате вон ту ёмкость». Вас, конечно, поймут, но лучше соблюдать «правила хорошего тона».

Электрическая ёмкость конденсатора – это главный его параметр.

Чем больше ёмкость конденсатора, тем больший заряд он может сохранить. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F.

1 Фарад - очень большая ёмкость (земной шар имеет ёмкость менее 1Φ), поэтому для обозначения ёмкости в радиолюбительской практике используются следующие основные размерные величины - префиксы: μ (микро), n (нано) и p (пико):

- 1 микроФарад 10^{-6} (одна миллионная часть), т.е. $1000000\mu\text{F} = 1\text{F}$
- 1 наноФарад 10^{-9} (одна миллиардная часть), т.е. $1000 \text{nF} = 1 \mu \text{F}$
- р (пико) 10^{-12} (одна триллионная часть), т.е. 1000pF = 1nF

Как и Ом, Фарад — это фамилия физика. Поэтому, как культурные люди, пишем прописную букву « Φ »: 10 п Φ , 33 н Φ , 470 мк Φ .

Номинальное напряжение конденсатора

Расстояние между пластинами конденсатора (особенно конденсатора большой ёмкости) очень мало, и достигает единиц микрометра. Если приложить к обкладкам конденсатора слишком высокое напряжение, слой диэлектрика может быть нарушен. Поэтому каждый конденсатор имеет такой параметр, как номинальное напряжение. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Но лучше, когда номинальное напряжение конденсатора несколько выше напряжения в схеме. То есть, например, в схеме с напряжением 16В могут работать конденсаторы с номинальным напряжением 16В (в крайнем случае), 25В, 50В и выше. Но нельзя ставить в эту схему конденсатор с номинальным напряжением 10В. Конденсатор может выйти из строя, причём часто это происходит с неприятным хлопком и выбросом едкого дыма.

Как правило, в радиолюбительских конструкциях для начинающих не используется напряжение питания выше 12B, а современные конденсаторы чаще всего имеют номинальное напряжение 16B и выше. Но помнить о номинальном напряжении конденсатора очень важно.

Типы конденсаторов

О разнообразных конденсаторах можно написать много томов. Впрочем, это уже сделали некоторые другие авторы, поэтому я расскажу только самое необходимое: конденсаторы бывают неполярные и полярные (электролитические).

Неполярные конденсаторы

Неполярные конденсаторы (в зависимости от типа диэлектрика подразделяются на бумажные, керамические, слюдяные...) могут устанавливаться в схему как угодно – в этом они похожи на резисторы.

Как правило, неполярные конденсаторы имеют относительно небольшую ёмкость: до 1 мкФ.

Маркировка неполярных конденсаторов

На корпус конденсатора нанесён код из трёх цифр. Первые две цифры определяют значение ёмкости в пикофарадах ($\pi\Phi$), а третья — количество нулей. Так, на изображённом ниже рисунке на конденсатор нанесён код 103. Определим его ёмкость: $10 \pi\Phi + (3 \text{ нуля}) = 10000 \pi\Phi = 10 \pi\Phi = 0,01 \text{ мк}\Phi$.

Конденсаторы ёмкостью до 10 пФ маркируются по-особенному: символ «R» в их кодировке обозначает запятую. Теперь Вы можете определить ёмкость любого конденсатора. Приведённая ниже табличка поможет Вам проверить себя.

Код	Номинал	Код	Номинал	Код	Номинал
1R0	1 пФ	101	100 пФ	332	3.3 нФ
2R2	2.2 пФ	121	120 пФ	362	3.6 нФ
3R3	3.3 пФ	151	150 пФ	472	4.7 нФ
4R7	4.7 пФ	181	180 пФ	562	5.6 нФ
5R1	5.1 пФ	201	200 пФ	682	6.8 нФ
5R6	5.6 пФ	221	220 пФ	752	7.5 нФ
6R8	6.8 пФ	241	240 пФ	822	8.2 нФ
7R5	7.5 пФ	271	270 пФ	912	9.1 нФ
8R2	8.2 пФ	301	300 пФ	103	10 нФ
100	10 пФ	331	330 пФ	153	15 нФ
120	12 пФ	361	360 пФ	223	22 нФ
150	15 пФ	391	390 пФ	333	33 нФ
160	16 пФ	431	430 пФ	473	47 нФ
180	18 пФ	471	470 пФ	683	68 нФ
200	20 пФ	511	510 пФ	104	0.1 мкФ
220	22 пФ	561	560 пФ	154	0.15 мкФ
240	24 пФ	621	620 пФ	224	0.22 мкФ
270	27 пФ	681	680 пФ	334	0.33 мкФ

30 пФ	751	750 пФ	474	0.47 мкФ
33 пФ	821	820 пФ	684	0.68 мкФ
36 пФ	911	910 пФ	105	1 мкФ
39 пФ	102	1 нФ	155	1.5 мкФ
43 пФ	122	1.2 нФ	225	2.2 мкФ
47 пФ	132	1.3 нФ	475	4.7 мкФ
51 пФ	152	1.5 нФ	106	10 мкФ
56 пФ	182	1.8 нФ		
68 пФ	202	2 нФ		
75 пФ	222	2.2 нФ		
82 пФ	272	2.7 нФ		
91 пФ	302	3 нФ		
	33 πΦ 36 πΦ 39 πΦ 43 πΦ 51 πΦ 56 πΦ 68 πΦ 75 πΦ 82 πΦ	33 πΦ 821 36 πΦ 911 39 πΦ 102 43 πΦ 122 47 πΦ 132 51 πΦ 152 56 πΦ 182 68 πΦ 202 75 πΦ 222 82 πΦ 272	33 пФ 821 820 пΦ 36 пФ 911 910 пФ 39 пФ 102 1 нФ 43 пФ 122 1.2 нФ 47 пФ 132 1.3 нФ 51 пФ 152 1.5 нФ 56 пФ 182 1.8 нФ 68 пФ 202 2 нФ 75 пФ 222 2.2 нФ 82 пФ 272 2.7 нФ	33 пФ 821 820 пФ 684 36 пФ 911 910 пФ 105 39 пФ 102 1 нФ 155 43 пФ 122 1.2 нФ 225 47 пФ 132 1.3 нФ 475 51 пФ 152 1.5 нФ 106 56 пФ 182 1.8 нФ 68 пФ 202 2 нФ 75 пФ 222 2.2 нФ 82 пФ 272 2.7 нФ

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Например, вместо конденсатора 15 нФ набор может комплектоваться конденсатором 10 нФ или 22 нФ, и это не отразится на работе готовой конструкции.

Керамические конденсаторы не имеют полярности и могут устанавливаться в любом положении выводов.

Некоторые мультиметры (кроме самых бюджетных) имеют функцию измерения ёмкости конденсаторов, и Вы можете воспользоваться этим способом.

Полярные (электролитические) конденсаторы

Есть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика.

Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора. Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны.

На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с бОльшим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мк Φ х 25B набор можно применить конденсатор 470 мк Φ х 50B, и это не отразится на работе готовой конструкции.

Внешний вид электролитического конденсатора

Правильно установленный на плату конденсатор